MULTITEMPORAL CROP TYPE CLASSIFICATION USING CONDITIONAL RANDOM FIELDS AND RAPIDEYE DATA

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multitemporal Crop Type Classification Using Conditional Random Fields and Rapideye Data

The task of crop type classification with multitemporal imagery is nowadays often done applying classifiers that are originally developed for single images like support vector machines (SVM). These approaches do not model temporal dependencies in an explicit way. Existing approaches that make use of temporal dependencies are in most cases quite simple and based on rules. Approaches that integra...

متن کامل

Crop Type Classification Using Vegetation Indices of Rapideye Imagery

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential...

متن کامل

Crop Classification with Multitemporal Polarimetric Sar Data

Multitemporal measurements gathered by EMISAR over the Foulum (Jutland) test site and AirSAR over the Wageningen test site provide an unrivalled opportunity to examine the factors affecting classification of northern European agricultural crops using both polarimetric and multitemporal information. Data analysis, guided by physical principles, has been used to investigate those polarimetric fea...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest

Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest John A. Long a , Rick L. Lawrence a , Mark C. Greenwood b , Lucy Marshall a & Perry R. Miller a a Department of Land Resources and Environmental Sciences , Montana State University , P.O. Box 173120, Bozeman , MT , 59715-3120 , USA b Department of Mathematical Sciences , Montana State University , Boz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

سال: 2012

ISSN: 2194-9034

DOI: 10.5194/isprsarchives-xxxviii-4-w19-115-2011